Estimation of floodplain aboveground biomass using multispectral remote sensing and nonparametric modeling
نویسندگان
چکیده
Floodplain forests serve a critical function in the global carbon cycle because floodplains constitute an important carbon sink compared with other terrestrial ecosystems. Forests on dynamic floodplain landscapes, such as those created by river meandering processes, are characterized by uneven-aged trees and exhibit high spatial variability, reflecting the influence of interacting fluvial, hydrological, and ecological processes. Detailed and accurate mapping of aboveground biomass (AGB) on floodplain landscapes characterized by uneven-aged forests is critical for improving estimates of floodplain-forest carbon pools, which is useful for greenhouse gas (GHG) life cycle assessment. It would also help improve our process understanding of biomorphodynamics of river-floodplain systems, as well as planning and monitoring of conservation, restoration, and management of riverine ecosystems. Using stochastic gradient boosting (SGB), multivariate adaptive regression splines (MARS), and Cubist, we remotely estimate AGB of a bottomland hardwood forest on a meander bend of a dynamic lowland river. As predictors, we use 30-m and 10-m multispectral image bands (Landsat 7 ETM+ and SPOT 5, respectively) and ancillary data. Our findings show that SGB and MARS significantly outperform Cubist, which is used for U.S. national-scale forest biomass mapping. Across all data-experiments and algorithms, at 10-m spatial resolution, SGB yields the 2 best estimates (RMSE = 22.49 tonnes/ha; coefficient of determination (R ) = 0.96) when geomorphometric data are also included. On the other hand, at 30-m spatial resolution, MARS yields the best estimates (RMSE = 29.2 tonnes/ha; R2 = 0.94) when image-derived data are also included. By enabling more accurate AGB mapping of floodplains characterized by uneven-aged forests, SGB and MARS provide an avenue for improving operational estimates of AGB and carbon at local, regional/continental, and global scales. © 2014 Elsevier B.V. All rights reserved.
منابع مشابه
Potential of Landsat-8 spectral indices to estimate forest biomass
Forest ecosystems are among the largest terrestrial carbon reservoirs on our planet earth thus playing a vital role in global carbon cycle. Presently, remote sensing techniques provide proper estimates of forest biomass and quantify carbon stocks. The present study has explored Landsat-8 sensor product and evaluated its application in biomass mapping and estimation. The specific objectives were...
متن کاملEstimating Forest Aboveground Biomass by Combining Optical and SAR Data: A Case Study in Genhe, Inner Mongolia, China
Estimation of forest aboveground biomass is critical for regional carbon policies and sustainable forest management. Passive optical remote sensing and active microwave remote sensing both play an important role in the monitoring of forest biomass. However, optical spectral reflectance is saturated in relatively dense vegetation areas, and microwave backscattering is significantly influenced by...
متن کاملImpacts of Spatial Variability on Aboveground Biomass Estimation from L-Band Radar in a Temperate Forest
Estimation of forest aboveground biomass (AGB) has become one of the main challenges of remote sensing science for global observation of carbon storage and changes in the past few decades. We examine the impact of plot size at different spatial resolutions, incidence angles, and polarizations on the forest biomass estimation using L-band polarimetric Synthetic Aperture Radar data acquired by NA...
متن کاملComparison of Geographically Weighted Regression and Regression Kriging to Estimate the Spatial Distribution of Aboveground Biomass of Zagros Forests
Aboveground biomass (AGB) of forests is an essential component of the global carbon cycle. Mapping above-ground biomass is important for estimating CO2 emissions, and planning and monitoring of forests and ecosystem productivity. Remote sensing provides wide observations to monitor forest coverage, the Landsat 8 mission provides valuable opportunities for quantifying the distribution of above-g...
متن کاملRemote Sensing Estimates of Grassland Aboveground Biomass Based on MODIS Net Primary Productivity (NPP): A Case Study in the Xilingol Grassland of Northern China
The precise and rapid estimation of grassland biomass is an important scientific issue in grassland ecosystem research. In this study, based on a field survey of 1205 sites together with biomass data of the Xilingol grassland for the years 2005–2012 and the ―accumulated‖ MODIS productivity starting from the beginning of growing season, we built regression models to estimate the aboveground biom...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. J. Applied Earth Observation and Geoinformation
دوره 33 شماره
صفحات -
تاریخ انتشار 2014